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Abstract: Keratoconus (KC) is a noninflammatory ectatic disease characterized by progressive
thinning and an apical cone-shaped protrusion of the cornea. In recent years, more and more
researchers have been committed to automatic and semi-automatic KC detection based on
corneal topography. However, there are few studies about the severity grading of KC, which
is particularly important for the treatment of KC. In this work, we propose a lightweight KC
grading network (LKG-Net) for 4-level KC grading (Normal, Mild, Moderate, and Severe).
First of all, we use depth-wise separable convolution to design a novel feature extraction block
based on the self-attention mechanism, which can not only extract rich features but also reduce
feature redundancy and greatly reduce the number of parameters. Then, to improve the model
performance, a multi-level feature fusion module is proposed to fuse features from the upper
and lower levels to obtain more abundant and effective features. The proposed LKG-Net was
evaluated on the corneal topography of 488 eyes from 281 people with 4-fold cross-validation.
Compared with other state-of-the-art classification methods, the proposed method achieves
89.55% for weighted recall (W_R), 89.98% for weighted precision (W_P), 89.50% for weighted
F1 score (W_F1) and 94.38% for Kappa, respectively. In addition, the LKG-Net is also evaluated
on KC screening, and the experimental results show the effectiveness.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Keratoconus (KC) is an ophthalmic disease characterized by a dilated, centrally thinned cornea
protruding forward in a conical shape, which is usually asymmetric [1,2]. It tends to develop in
adolescence and often results in highly irregular myopic astigmatism, with acute corneal edema,
scarring, and significant loss of visual acuity in advanced stages [3–5]. Studies have shown that
the prevalence in the general population is approximately between 5 and 23 per 10,000 [1,4,5].
Although the etiology of KC is still unknown, researchers have found that the incidence of this
disease varies by ethnic, environmental and genetic factors. According to a study in the United
Kingdom, a prevalence of 4:1, and an incidence of 4.4:1 was found in Asians compared to whites
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[6]. Multiple genes are involved in the development of KC, and the prevalence of positive family
history is relatively high [7–9].

The treatment of KC depends on the progression of the disease and its severity. Traditionally,
spectacles have provided acceptable vision for mild to moderate patients. As the disease
progresses and irregular astigmatism develops, contact lenses can correct irregular astigmatism
to provide better vision for moderate patients [10,11], such as hybrid lenses, piggyback lenses, or
scleral lenses [12]. Patients with severe KC can be treated with keratoplasty [10]. Other surgical
treatment options include intra-corneal rings segments [13,14], corneal cross-linking [15,16],
laser procedures [17,18], intra-ocular lens implants [19,20]or a combination of these [21]. It is
evident that the development of an effective KC grading algorithm will provide effective guidance
and assistance to ophthalmologists in the treatment plan for their patients.

Ophthalmologists often diagnose KC based on corneal topographies because they provide
detailed data and morphological characteristics of the cornea. In this paper, we use the data
obtained from a 3D corneal topography and anterior segment analysis system, which gives five
color-coded maps, which are corneal thickness (170 to 890 µm, 30 µm step), tangential anterior
(38.00 to 50.50 D, 0.50 D step), anterior elevation (−120 to 120 µm, 10 µm step), tangential
posterior (−10.50 to −3.00 D, 0.50 D step), and posterior elevation (−120 to 120 µm, 10 µm
step) maps, as shown in Fig. 1. Corneal curvature, elevation and thickness were measured by
Scheimpflug camera and Placido corneal topography. During the scanning process, a series of
25 Scheimpflug images (meridian) and 1 Placido top view image were obtained. The annular
edges were detected on the Placido image in order to calculate height, slope and curvature data
using the arc-step method with conic curves, and the corresponding corneal topographic maps
can be generated [22]. Based on the corneal data obtained from various devices, researchers have
proposed various KC grading systems, such as the Amsler-Krumeich classification system [23],
the Shabayek Ali ó grading system [24], the keratoconus severity score (KSS) system [25] and the
ABCD grading system [26]. The Amsler-Krumeich classification system classifies cases based
on the amount of myopia and astigmatism, corneal thickness or scarring, and central k-readings,
and is a widely used classification standard by researchers.

Fig. 1. Examples of corneal topographies of normal and KC eyes. Five color-coded maps
(corneal thickness, tangential anterior, anterior elevation, tangential posterior, and posterior
elevation map) measured with an anterior segment analyzer.

In recent years, with the continuous development of artificial intelligence (AI) technologies, it
has become more and more common to use AI techniques, especially machine learning (ML),
to evaluate and detect various diseases. Especially in the field of deep learning (DL), AlexNet
[27], VGGNet [28], GoogLeNet [29], ResNet [30], DenseNet [31] and other convolutional
neural networks (CNNs) have been proposed for image recognition in many different scenes. In
ophthalmology, DL methods have been widely used in the diagnosis and screening of diseases,
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such as diabetes retinopathy (DR) [32], age-related macular degeneration (AMD) [33], retinopathy
of prematurity (ROP) [34], etc., as described in [35]. In the past, many researches on KC mainly
focused on the screening and detection of KC. Most of them used some machine learning
algorithms to diagnose the disease by processing and analyzing the corneal indices obtained from
the devices [22,36–39]. Accardo et al. used nine parameters obtained from corneal topography
as the input of three-layer neural network to achieve clinical classification (normal, KC, other
changes). The result demonstrated the quality and value of the neural network approach in
identifying the topographic patterns of KC [37]. Arbelaez et al. used support vector machine to
process the data from anterior and posterior corneal surfaces and pachymetry measured with a
Scheimpflug camera combined with Placido corneal topography. The classification algorithm
showed high accuracy, precision, sensitivity, and specificity in discriminating among abnormal
eyes, eyes with KC or subclinical KC, and normal eyes. Including the posterior corneal surface
and thickness parameters markedly improved the sensitivity in the diagnosis of subclinical KC
[22]. With the emergence of advanced imaging devices, researchers began to use DL technology
to research end-to-end automated KC detection algorithms based on corneal topography [40–43].
Lavric et al. integrated the SyntEyes KTC model to generate corneal topography to expand
the experimental data and obtained excellent results on the dataset using CNN. This work is
considered to be the first to introduce CNN into KC diagnosis [40]. Kuo et al. used three CNNs
to detect KC based on corneal topography, and the sensitivity and specificity of all CNN models
were over 0.90. The pixel-wise discriminative features and the heat maps of the prediction layer
in the VGG16 model both revealed the focus on the largest gradient difference of topographic
maps, which was corresponding to the diagnostic clues of ophthalmologists [42]. Kazutaka et al.
separately trained six neural networks from each image of six color-coded maps, and integrated
them by averaging the six outputs. The result showed an accuracy of 0.874 in classifying the
stage of the disease [44].

In conclusion, DL is conducive to the severity grading of KC based on corneal topography.
However, most of the current studies on KC use traditional CNNs to process each corneal map
separately, without feature fusion to extract more effective features. Moreover, some models are
complex, and some require to manually extract advanced features. Therefore, it is not suitable to
be integrated into devices for automatic detection. Recently, various lightweight networks based
on depth-wise separable convolution have been emerging, and have achieved good classification
performance in different image classification tasks [45–48]. In addition, as seen in Fig. 1, we can
notice these key features of the corneal topography with KC, and several studies have shown that
the attention mechanism can help learn useful features to improve the performance of the network
[49,50,52]. Based on CNNs, we propose an end-to-end lightweight KC grading network named
LKG-Net. Using depth-wise separable convolution, we designed a self-attention based feature
extraction block (SaFEB), which can significantly reduce the model complexity while obtaining
more important features. Meanwhile, we propose a multi-level feature fusion module (MlFFM),
which can adaptively calibrate features of upper and lower channel dimensions and fuse features.
The whole diagnosis process is automated, unlike previous research, which requires manual data
collection or complex manual feature extraction. The main contributions of this paper can be
summarized as follows:

(1) A lightweight classification network based on a novel feature extraction block is proposed
for 4-level KC severity grading, which has excellent performance despite of a significant
reduction in the model complexity. The block can use different dimensions of feature
information to generate the attention weight matrix, so as to obtain more abundant and
effective features.
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(2) A new multi-level feature fusion module is proposed, which can adaptively calibrate the
features of the upper and lower channel dimensions and fuse them according to a certain
weight, further improving the accuracy of KC severity grading.

(3) Extensive experiments have been carried out to evaluate the effectiveness of the proposed
method. Experimental results show that this method is superior to other most advanced
classification methods in KC severity classification task. In addition, the method is also
evaluated on KC screening, and the experimental results show the effectiveness.

The remainder of this paper is organized as follows: Section 2 introduces the proposed method
of automatic KC severity grading. The experimental results are presented in detail in Section 3.
In section 4, we conclude this paper and suggest future work.

2. Methodology

2.1. Overview

Figure 2 gives an overview of the novel end-to-end KC severity grading method based on LKG-Net.
Using the corneal topography reports exported from the imaging device, we automatically extract
the five color-coded maps from the report and further process them to generate the data format
we need as input to the network, and LKG-Net will classify the samples into four categories:
normal, mild, moderate and severe. All these steps can be integrated into a fully automated
diagnostic approach from the corneal topography report.

Fig. 2. Overview of the proposed method.

2.2. LKG-Net architecture

As shown in Fig. 2, using ResNet18 [30] as backbone, the proposed LKG-Net mainly includes
self-attention based feature extraction blocks (SaFEB) and a multi-level feature fusion module
(MlFFM). We use SaFEB to replace the basic block in ResNet18, and add MlFFM to fuse the
feature maps output from level 3 and level 4 to obtain richer feature information.

2.2.1. Self-attention based feature extraction block (SaFEB)

The most common practice to obtain a high-quality model is to increase the depth of the model, but
the deeper the network, the more likely it is to suffer from gradient disappearance [29,51]. If more
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effective feature extraction modules can be designed, a shallower network can be sufficient for the
specific task. Recently, with the advent of Transformer [52], the modules based on self-attention
have achieved performance comparable to or even better than the corresponding CNN modules
on many vision tasks. The self-attention modules usually use a weighted averaging operation
based on the input feature context to dynamically compute attention weights through a similarity
function between relevant pixel pairs. This flexibility allows the attention module to adaptively
focus on different regions and capture more features [53]. Based on the idea of self-attention, we
design a novel feature extraction block, which uses different dimensions of feature information to
generate its attention weight matrix, so as to obtain more abundant and effective features. In
addition, to reduce the model complexity, we use depth-wise separable convolution (DSC) instead
of traditional convolution. DSC consists of deep-wise (Dw) convolution and 1× 1 convolution.
In Dw convolution, a convolution kernel has only one dimension, and a channel is convolved
by only one convolution kernel. It can significantly reduce the number of parameters while
maintaining the model performance, and thus is widely used in lightweight networks [45–47].

The feature extraction block based on the self-attention mechanism obtains the average and
maximum information of the corresponding dimensions of each channel of the input features, and
generates attention weights based on the rich information of these different dimensions, which
can guide the network to extract the important feature information. As shown in Fig. 3, given
the input feature maps Fi ∈ R

Ci,Hi,Wi , it passes through batch normalization (BN) and ReLU6,
which enhances the regularization of the model and makes it easier to optimize [54]. Then, the
output feature maps are convolved by 3× 3 deep-wise separable convolutions to obtain the feature
maps Fq ∈ RCo,Ho,Wo , Fk ∈ RCo,Ho,Wo , and Fv ∈ RCo,Ho,Wo as illustrated in Eq. (1). The average
values of the specified dimension of the feature maps Fq and Fk are obtained as WqA ∈ RCo,Ho,1

and WkA ∈ RCo,1,Wo , and the maximum values of the specified dimension of the feature maps
Fq and Fk are obtained as WqM ∈ RCo,1,Wo and WkM ∈ RCo,Ho,1, as illustrated in Eq. (2). After
multiplying and adding them, the attention weight matrix Wv ∈ RCo,Ho,Wo is obtained by the
Hard-sigmoid function, as illustrated in Eq. (3). Then the feature maps Fv are multiplied with
Wv to apply the attention weights. Finally, the output feature maps Fo ∈ RCo,Ho,Wo are obtained
by adding the result with the feature maps Fi after 1× 1 convolution, as illustrated in Eq. (4).
Because of the need to multiply feature dimensions in the first block of level 2, 3, and 4, 1× 1
convolution is used in the final summation to make the feature size consistent.

Fq = DSC3(BR(Fi)) Fk = DSC3(BR(Fi)) Fv = DSC3(BR(Fi)) (1)

WqA, WkA = Avg(Fq , Fk) WkM , WqM = Max(Fq , Fk) (2)

Wv = HS( EM(WqA, WkA) + EM(WkM , WqM)) (3)

Fo = EM(Fv, Wv ) + C1(Fi) (4)

where Fi ∈ R
Ci,Hi,Wi denotes the input feature maps, Ci is the number of channels, Hi is the

height and Wi is the width of feature maps, BR represents batch normalization and ReLU6, DSC3
represents the deep-wise separable convolution with kernel size of 3× 3, Max represents the
maximum operation, Avg represents the average operation, EM represents the element-wise
multiplication, HS represents the Hard-sigmoid function, and C1 represents 1× 1 convolution.

2.2.2. Multi-level feature fusion module (MlFFM)

Similar to human attention, the essence of the attention mechanism in DL focuses on useful
feature information. Many studies have shown that the performance of CNN models can be
improved by focusing on important features and suppressing irrelevant features through the
attention mechanism [55–57]. As shown in Fig. 1, the corneal topography maps of KC patients
have distinct features compared with normal subjects. Through convolution operation, these
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Fig. 3. The illustration of self-attention based feature extraction block (SaFEB).

features can be extracted to generate corresponding feature maps. However, some feature maps
without key information may reduce the judgment ability of the model. The channel attention
mechanism can obtain the importance of each feature map by automatic learning, and then assigns
a weight to each feature, so that the network can focus on certain feature channels, improve
the importance of the feature maps that are useful for the current task, and suppress the feature
channels that are not useful for the current task [50]. In addition, sometimes some key information
from the previous layer may be lost at higher level during the learning process. Therefore, we
design a multi-level feature fusion module (MlFFM), which can adaptively calibrate the features
of the upper and lower channel dimensions based on the channel attention mechanism, and fuse
the calibrated features of the two levels according to a certain weight to reinforce the features.

As shown in Fig. 4, in the channel attention mechanism, the maximum pooled features and the
average pooled features go through 1× 1 convolution and ReLU6, respectively, and the obtained
results are added. Then channel attention weights are generated with a range of 0-1 through the
hard-sigmoid activation function. Finally, the weights are multiplied with the feature map of
corresponding channel to adjust their importance. The hard-sigmoid function is implemented
based on ReLU6 and is very close to the sigmoid function, but it will become simpler in the
calculation of derivatives [47]. Given the N-1th level output FN−1 ∈ RC,H,W and the Nth level
output FN ∈ RC×2,H/2,W/2, the dimension and size of the N-1th level features are first adjusted
to be consistent with those of the Nth level using 1× 1 convolution, and then the feature maps
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are rescaled separately using the channel attention mechanism. The calibrated results are fused
according to a fusion ratio w to obtain richer feature information. Finally, 1× 1 convolution is
used to eliminate information redundancy. The output FN+1 ∈ RC×2,H/2,W/2 of MlFFM can be
computed as:

FN+1 = C1((CA(C2(FN−1))) × w + (CA(FN)) × (1 − w)) (5)

where C is the number of channels, H is the height and W is the width of feature map. CA
represents the channel attention mechanism, C1 represents the 1× 1 convolution, and w ∈ [0, 1]
represents the fusion ratio of the N-1th level.

Fig. 4. The illustration of multi-level feature fusion module (MlFFM).

2.3. Loss functions

Our proposed network is aimed at grading the severity of KC, which is a multi-classification task.
In the supervised classification tasks of deep learning, people often use cross entropy (CE) loss
function. It can be used not only for binary classification tasks but also for multi-category tasks,
and can effectively measure the difference between the distribution learned by the model and the
true distribution of labels. CE loss is generally defined as follows:

Lm = −
1
N

∑︂N−1

i=0

∑︂K−1

k=0
yi,klnpi,k (6)

where yi,k denotes the ground truth label indicating the i-th sample belongs to category k, K is the
number of categories, and N is the number of samples per mini-batch. pi,k denotes the predicted
probability that the i-th sample belongs to the category k.

3. Experiments and results

3.1. Dataset

The dataset of this study was collected in the Ophthalmology Center of the First Affiliated
Hospital of Soochow University from 2017 to 2021. Corneal curvature, elevation, and thickness
measurements were obtained by means of a Scheimpflug camera combined with Placido corneal
topography (Sirius, software version 1.2, CSO, Firenze, Italy). The measurements were carried
out by an experienced examiner according to the guidelines. An informed consent was obtained
from the guardians of each subject to perform all the imaging procedures. The collection and
analysis of the examination reports were approved by the review committee of the First Affiliated
Hospital of Soochow University and complied with the principles of the Declaration of Helsinki.
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On the premise of ensuring the quality of the corneal topographic maps, examination reports
were collected from 488 eyes of 281 people, including 236 normal and 252 KC eyes. The
processed data of each eye contained five corneal topographic maps (shown in Fig. 1), which were
corneal thickness (TK), tangential anterior (TA), anterior elevation (AE), tangential posterior
(TP), and posterior elevation (PE) maps, and the resolution of the images was 640× 480. Each
type of topographic map used a fixed color scale where one color represented a given range
of intervals. The ground truth of the data was given by a professional ophthalmologist, who
identified KC eyes from normal ones, and classified KC eyes into three categories: mild (138
eyes), moderate (63 eyes), and severe (51 eyes), based on both clinical experience and analysis of
indicators from the examination reports, with reference to the Amsler-Krumeich classification
system [23]. Considering the amount of data, a 4-fold cross-validation strategy was used in order
to assess the validity of the proposed method. To reduce the computational cost, all corneal
topographic maps were down sampled to 256× 256 using bilinear interpolation and the intensities
of each color channel were normalized to [0,1].

3.2. Experimental setup

3.2.1. Parameter setting

The implementation of the proposed LKG-Net is based on the PyTorch platform. A NVIDIA
GeForce RTX 3090 GPU with 24GB memory was used to train the model with back-propagation
algorithm by minimizing the loss function as shown in Eq. (6). The adaptive momentum (Adam)
algorithm with an initial learning rate of 0.0001, momentum of 0.9 and weight decay of 0.0001
was used to optimize the network. Besides, the batch size was set to 8 and the number of epochs
was 200.

3.2.2. Evaluation metrics

As can be seen from the dataset, the number of samples in each category is unbalanced. In order
to comprehensively and fairly evaluate the classification performance of different methods, we
use common metrics including weighted recall (W_R), weighted precision (W_P), weighted
F1 score (W_F1) and Kappa [58] index to evaluate the KC severity grading performance. In
addition, the indicators of accuracy, precision, recall, F1 score and area under the ROC curve
(AUC) are used to evaluate the performance of the proposed method on KC screening.

3.3. Comparison experiments

with a 4-fold cross validation strategy, we compare the proposed method with other excellent
CNN based classification networks, including VGG16 [28], InceptionV2, ResNet34 [36],
ResNet101 [36], ResNext50 [59], SE_ResNet50 [50], SE_ResNext50 [50], DenseNet121 [31],
EfficientNet_b0 [33], EfficientNet_b2 [33], MobileNet_v3_small [47], MobileNet_v3_large
[47], Mutil-ResNet18_FF and Mutil-ResNet18_DF [44]. The Mutil-ResNet18_FF means we
use five weight-sharing networks to process images separately, and then perform feature fusion
by concatenating features of the last layers. The Mutil-ResNet18_DF means we use five
weight-sharing networks to process images separately, and then perform decision-layer fusion
by averaging the predicted probability at decision layers. For convenience, we call the basic
ResNet18 [36] as the Baseline method. Except for Mutil-ResNet18_FF and Mutil-ResNet18_DF,
we feed five corneal topographic maps as a 15-channel input into the network for training and
testing, and the experimental results are shown in Table 1.

As we can see from Table 1, the proposed LKG-Net outperforms the mentioned state-of-the-art
CNN based methods. Firstly, compared to the Baseline, the performance of our method has been
improved, which improves the W_R, W_P, W_F1 and Kappa by 2.46%, 2.15%, 3.45% and 1.67%,
respectively. The complexity of our model is greatly reduced and the number of parameters is only
one fifth of that of Baseline, making it a lightweight model. Secondly, our method has significant
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Table 1. Comparison of KC Grading Results of Different Methods

Methods W_R W_P W_F1 Kappa Parameter
(M)

VGG16 [28] 0.8668± 0.0169 0.8658± 0.0210 0.8637± 0.0180 0.9265± 0.0106 165.75

InceptionV2 [51] 0.8811± 0.0331 0.8816± 0.0321 0.8790± 0.0335 0.9241± 0.0302 7.37

ResNet34 [36] 0.8689± 0.0115 0.8678± 0.0249 0.8590± 0.0214 0.9225± 0.0129 21.32

ResNet101 [36] 0.8648± 0.0156 0.8647± 0.0218 0.8577± 0.0189 0.9278± 0.0114 42.55

ResNext50 [59] 0.8689± 0.0177 0.8697± 0.0156 0.8673± 0.0177 0.9224± 0.0195 23.03

SE_ResNet50 [50] 0.8729± 0.0271 0.8739± 0.0279 0.8715± 0.0295 0.9289± 0.0261 26.08

SE_ResNext50 [50] 0.8832± 0.0103 0.8835± 0.0115 0.8798± 0.0098 0.9283± 0.0321 26.08

DenseNet121 [31] 0.8771± 0.0241 0.8905± 0.0285 0.8753± 0.0250 0.9221± 0.0118 6.99

EfficientNet_b0 [33] 0.8627± 0.0270 0.8605± 0.0288 0.8582± 0.0292 0.9122± 0.0199 4.02

EfficientNet_b2 [33] 0.8361± 0.0444 0.8297± 0.0741 0.8172± 0.0557 0.8869± 0.0470 9.11

MobileNetV3_small [47] 0.8156± 0.0171 0.8094± 0.0163 0.8090± 0.0174 0.8928± 0.0171 1.83

MobileNetV3_large [47] 0.8423± 0.0226 0.8590± 0.0233 0.8412± 0.0244 0.9075± 0.0257 4.21

Mutil-ResNet18_FF 0.8136± 0.0310 0.8083± 0.0414 0.7867± 0.0398 0.8739± 0.0305 12.49

Mutil-ResNet18_DF [44] 0.8156± 0.0303 0.8163± 0.0398 0.8123± 0.0366 0.8712± 0.0533 11.18

Baseline [36] 0.8709± 0.0155 0.8783± 0.0206 0.8605± 0.0223 0.9271± 0.0193 11.22

LKG-Net (Ours) 0.8955± 0.0263 0.8998± 0.0274 0.8950± 0.0280 0.9438± 0.0180 2.32

advantages in terms of model performance and complexity compared to other ResNet-based
networks with attention mechanism including SE_Resnet50 and SE_ResNext50. Compared with
Mutil-ResNet18_FF and Mutil-ResNet18_DF, the result of Baseline is significantly improved
with 15-channel input. These corneal maps are generated based on the same eye surface and
reflect the morphological features of the cornea from different aspects, so the 15-channel input
is more convenient for the network to extract the correlation features among the corneal maps
to achieve better classification result. Compared to MobileNetV3_small, which is a typical
representative of lightweight networks with comparable model complexity, our method has also
made great improvement in performance. In addition, comparing the experimental results of
different versions of the same network in Table 1, it can be found that the performance of the
model will gradually decrease with the increase of network depth, especially for the small and
large versions of MobileNetV3. Although VGG16 has a simple structure with fewer layers, its
performance is relatively high. As shown in Fig. 1, corneal topographic maps are relatively
simple color-coded images, which are not full of many complex targets, so complex networks are
not necessary. Based on these experimental results and data analysis, we infer that the dataset is
more suitable to be processed by the network with fewer layers, which is why we choose simple
ResNet18 as the backbone, and the experimental results also verify our inference.

3.4. Experiments for different input combinations of corneal topography

To compare the effects of different combinations of the topographic maps in KC grading, we
conduct the experiments by feeding the LKG-Net with different inputs, and the results are shown
in Table 2. The first five rows give the results when we input one image, and the sixth and seventh
rows show the results when the network receives the posterior and anterior maps as a whole input
respectively. The last row gives the results when the network uses five maps as a whole input for
classification.

Firstly, compared to other schemes of input data, the network obtains the best performance
with five-map input. Secondly, for single image input, the network has excellent performance
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Table 2. KC Grading Results of Different Input Combinations of Corneal Topography

LKG-Net Input
W_R W_P W_F1 Kappa

TK TA AE TP PE
√

0.7500± 0.0280 0.7356± 0.0393 0.7355± 0.0365 0.8190± 0.0550
√

0.7480± 0.0350 0.7433± 0.0434 0.7337± 0.0412 0.8227± 0.0577
√

0.7992± 0.0345 0.7975± 0.0400 0.7917± 0.0303 0.8790± 0.0276
√

0.7608± 0.0375 0.7641± 0.0425 0.7674± 0.0365 0.8540± 0.0355
√

0.7805± 0.0232 0.7811± 0.0337 0.7724± 0.0207 0.8788± 0.0395
√ √

0.8382± 0.0123 0.8365± 0.0164 0.8333± 0.0163 0.9093± 0.0063
√ √

0.8256± 0.0082 0.8271± 0.0091 0.8254± 0.0088 0.8930± 0.0240
√ √ √ √ √ 0.8955± 0.0263 0.8998± 0.0274 0.8950± 0.0280 0.9438± 0.0180

using the elevation maps of anterior or posterior surfaces. Compared to other corneal maps in
Fig. 1, where the features are mainly concentrated in the central region, AE and PE maps have
more rich and diverse features, so the model has better classification results. And several studies
based on corneal data have also shown that the elevation indices have a significant role in the
diagnosis of KC [60,61]. Comparing the experimental results of the last three rows, we find
that the corneal maps on the posterior surface play an important role for the grading, which also
shows the importance of the data analysis of the corneal posterior surface in clinical research of
KC [62,63]. In addition, to explore the areas of attention of the network on different corneal
maps of KC eyes, we obtained the heat maps with Score-CAM separately for single corneal
topographic map input, as shown in Fig. 5. The comparison results show that the attention of the
network is focused on the regions with significant corneal changes, which is consistent with the
physician’s attention in the diagnosis, indicating the effectiveness of the deep learning method.

3.5. Ablation experiments

In order to verify the validity of the proposed self-attention based feature extraction block (SaFEB)
and multi-level feature fusion module (MlFFM), we have conducted the ablation experiments
as shown in Table 3, where Baseline is the ResNet18. As can be seen from Table 3, using the
proposed MlFFM achieves substantial improvement over the Baseline in W_R, W_P and W_F1
metrics. Meanwhile, using SaFEB to replace the basic blocks in ResNet18 also helps to improve
the performance with the significant decrease in the number of model parameters. We also use
the Score-CAM [64] to further demonstrate the effectiveness of the proposed method. As can
be observed from Fig. 6, benefiting from the modules of SaFEB and MlFFM, our method can
explicitly exploit information from the discriminative area for KC grading.

Table 3. The Results of Ablation Experiments based on LKG-Net

Methods W_R W_P W_F1 Kappa Parameter
(M)

Baseline 0.8709± 0.0155 0.8783± 0.0206 0.8605± 0.0223 0.9271± 0.0193 11.22

Baseline+MlFFM 0.8873± 0.0316 0.8949± 0.0271 0.8835± 0.0344 0.9291± 0.0204 11.68

Baseline+SaFEB 0.8893± 0.0106 0.8894± 0.0081 0.8865± 0.0103 0.9370± 0.0115 1.86
Proposed 0.8955± 0.0263 0.8998± 0.0274 0.8950± 0.0280 0.9438± 0.0180 2.32

In the multi-level feature fusion module (MlFFM), the value of w controls the fusion ratio
of the upper layer features. Results with different values for w are shown in Table 4. From the
experimental results, we can see that the network has the best performance when w is 0.3. In
convolutional neural networks, the features extracted from the deeper layers of the network have
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Fig. 5. Score-CAM visualization results of different corneal map inputs. For each input, we
selected three maps with different severity from the corneal maps of KC eyes.

Fig. 6. Score-CAM visualization results of different methods.
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stronger semantic information that facilitates classification, and the features obtained from the
shallower layers of the network contain more detailed information [65]. By fusing a certain
proportion of low level features, we can obtain more abundant feature information, which is
conducive to improving the model performance. However, an excess of the low level features
will cause certain interference to the network, reducing the model performance, as shown in our
experimental results.

Table 4. Ablation Study for the Influence of W in MlFFM

LKG-Net W_R W_P W_F1 Kappa

w= 0.1 0.8750± 0.0309 0.8718± 0.0336 0.8710± 0.0298 0.9324± 0.0236

w= 0.3 0.8955± 0.0263 0.8998± 0.0274 0.8950± 0.0280 0.9438± 0.0180
w= 0.5 0.8811± 0.0303 0.8829± 0.0261 0.8789± 0.0298 0.9364± 0.0199

w= 0.7 0.8853± 0.0334 0.8868± 0.0333 0.8845± 0.0346 0.9293± 0.0404

w= 0.9 0.8791± 0.0375 0.8901± 0.0362 0.8761± 0.0403 0.9335± 0.0164

3.6. Experiments for KC screening

To verify the effectiveness of this method in KC screening, we divided the data into a new dataset
containing 252 KC and 236 normal eyes. We also fed different combinations of inputs into the
network for the experiments, and the results are shown in Table 5. As can be seen from Table 5,
our method still achieves good results. Similar to the KC classification results in Table 2, when
inputting a single map, the corneal maps of anterior and posterior elevation all have excellent
performance in KC screening, and the corneal posterior data is also particularly important for KC
detection, which is also consistent with some medical research results on KC [61,62]. Moreover,
comparing the experimental results of the last three rows, it can be found that our method achieves
high accuracy in detection of KC. Both the anterior and the posterior maps can distinguish KC
well, and all five maps only slightly improved the model performance.

Table 5. KC Screening Results of Different Input Combinations of Corneal Topography

LKG-Net Input
Accuracy Precision Recall F1_score AUC

TK TA AE TP PE
√

0.9037± 0.0194 0.8858± 0.0111 0.8889± 0.0130 0.9053± 0.0171 0.9042± 0.0201
√

0.8955± 0.0155 0.8551± 0.0227 0.8492± 0.0304 0.8935± 0.0162 0.8971± 0.0156
√

0.9529± 0.0123 0.9210± 0.0126 0.9206± 0.0129 0.9528± 0.0123 0.9540± 0.0124
√

0.9119± 0.0205 0.8649± 0.0284 0.8572± 0.0343 0.9093± 0.0213 0.9137± 0.0203
√

0.9467± 0.0195 0.9241± 0.0310 0.9246± 0.0327 0.9469± 0.0201 0.9475± 0.0191
√ √

0.9631± 0.0082 0.9434± 0.0152 0.9445± 0.0159 0.9636± 0.0080 0.9638± 0.0083
√ √

0.9693± 0.0140 0.9512± 0.0182 0.9524± 0.0184 0.9697± 0.0138 0.9699± 0.0139
√ √ √ √ √

0.9734± 0.0079 0.9669± 0.0126 0.9683± 0.0129 0.9742± 0.0073 0.9735± 0.0083

4. Conclusion and discussions

In this paper, we propose an end-to-end deep learning network named LKG-Net for KC severity
grading. The proposed self-attention based feature extraction block (SaFEB) can not only extract
more abundant and important information, but also significantly reduce the complexity of the
model. The multi-level feature fusion module (MlFFM) is designed to adaptively calibrate the
features of the last two levels channel dimensions based on the channel attention mechanism, and
the calibrated two-level features are fused to enhance the features. The experimental results show
that our network can accurately grade the different severity of the disease, and also has excellent
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performance in the screening of KC. We use the Score-CAM to visualize the region of interest of
the proposed network, and the results demonstrate that it focuses on the region similar to the one
relied on by ophthalmologists.

Compared with other KC detection and grading methods based on machine learning [22,36–44],
our method has distinct advantages. First of all, our method is a truly automated end-to-end
KC diagnosis method. From report input to result output, the whole process is automatic, and
doctors don’t need to analyze complex parameter indicators, which will effectively relieve their
work pressure. Secondly, compared with other KC classification methods, our method has better
innovations in feature extraction and fusion, which can obviously improve the performance while
significantly reducing the amount of model parameters, and it will be conducive to the application
of our method in ophthalmic detection devices.

The current gold standard for KC grading relies on human interpretation of biomicroscopic
features and tomography scans, and has previously been shown to be limited by poor reproducibility
[66]. Although it is easy to illustrate the corneal shape using digital indices, they can’t represent
the spatial gradient and distribution of corneal curvature, elevation, diopter and thickness. With
the advent of advanced corneal imaging devices, multiple objective metrics obtained have been
proposed for the diagnosis and severity assessment of KC. Nevertheless, these highly complex
and numerous parameters may pose a clinical challenge to the ophthalmologist. Moreover, the
metrics obtained by different devices may be based on different reference standards, so the
algorithms trained based on metrics from one device are not universally applicable. To avoid
analysis and processing of complex parameters, we use color-coded maps to provide the CNNs
with more complete information about the overall state of the cornea. The heat maps in Fig. 5
and Fig. 6 reveal that our network can locate the key regions of the corneal maps. With the
features in these regions, it is easier to distinguish KC and its various stages. In addition, more
and more studies have shown that data from the posterior surface of the cornea are also important
references in the diagnosis of KC [60–63], which is also demonstrated by the results of our
experiments in Table 2 and Table 5. Such consistency between our results and previous studies
further illustrates the feasibility of using CNNs for KC detection.

Although the proposed method has achieved good performance on the test data, there are still
some limitations. First, all comparison and evaluation experiments are based on limited data
acquired from one device, and the sample size in each category is unbalanced. Therefore, we
should collect more data from multiple imaging devices to further validate the robustness of the
method, and improve the loss function to cope with the category imbalance. Second, some key
diagnostic metrics can be used to aid network classification, and we consider to implement it
in the subsequent work. In the future, we will collect more data and use the improved method
for the screening of early-stage KC, so as to better assist ophthalmologists in the diagnosis and
treatment of the disease.
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